
Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	1	of	18	

		

	1	

	2	

	3	

Face	Recognition	Prize	Challenge	(FRPC)	4	

	5	

	6	

	7	

	8	

Still	Face	9	

Concept,	Evaluation	Plan	and	API	10	

Version	2.0	11	

	12	

	13	

Patrick	Grother	and	Mei	Ngan	14	

Contact	via	frpc@nist.gov			15	

	16	

	

	
	

Image	Group	
Information	Access	Division		

Information	Technology	Laboratory	
	

	

April	6,	2017	

	17	
	18	

19	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	2	of	18	

		

Table	of	Contents	20	
1.	 Face	Recognition	Prize	Challenge	...	3	21	

1.1.	 Roles	of	IARPA	and	NIST	...	3	22	
1.2.	 Scope	..	3	23	
1.3.	 Audience	...	3	24	
1.4.	 Important	Dates	..	3	25	
1.5.	 Rules	for	participation	..	3	26	
1.6.	 Reporting	..	4	27	
1.7.	 Hardware	specification	...	4	28	
1.8.	 Operating	system,	compilation,	and	linking	environment	..	4	29	
1.9.	 Software	and	documentation	...	5	30	
1.10.	 Runtime	behavior	...	6	31	
1.11.	 Single-thread	requirement	and	parallelization	...	6	32	
1.12.	 Time	limits	..	6	33	

2.	 Data	structures	supporting	the	API	..	7	34	
2.1.	 Requirement	...	7	35	
2.2.	 File	formats	and	data	structures	...	7	36	

3.	 API	specification	...	9	37	
3.1.	 Namespace	...	10	38	
3.2.	 Challenge	IDENT	(1:N)	...	10	39	
3.3.	 Challenge	VERIF	(1:1)	..	15	40	

	41	
List	of	Tables	42	

Table	1	–	FRPC	Challenge	Participation	..	3	43	
Table	2	–	Implementation	library	filename	convention	...	5	44	
Table	3	–	Processing	time	limits	in	milliseconds,	per	640	x	480	color	image,	on	a	single	CPU	or	GPU	6	45	
Table	4	–	Structure	for	a	single	image	..	7	46	
Table	5	–	Structure	for	a	pair	of	eye	coordinates	...	7	47	
Table	6	–	Labels	describing	template	role	..	8	48	
Table	7	–	Enrollment	dataset	template	manifest	...	8	49	
Table	8	–	Structure	for	a	candidate	..	9	50	
Table	9	–	Enumeration	of	return	codes	..	9	51	
Table	10	–	ReturnStatus	structure	...	9	52	
Table	11	–	Procedural	overview	of	the	Challenge	IDENT	(1:N)	test	...	10	53	
Table	12	–	Enrollment	initialization	..	12	54	
Table	13	–	GPU	index	specification	..	12	55	
Table	14	–	Enrollment	feature	extraction	..	13	56	
Table	15	–	Enrollment	finalization	..	13	57	
Table	16	–	Probe	template	feature	extraction	initialization	..	14	58	
Table	17	–	Identification	initialization	..	14	59	
Table	18	–	Identification	search	...	15	60	
Table	19	–	Functional	summary	of	the	Challenge	VERIF	(1:1)	test	...	15	61	
Table	20	–	Initialization	..	16	62	
Table	21	–	GPU	index	specification	..	17	63	
Table	22	–	Template	generation	..	17	64	
Table	23	–	Template	matching	...	17	65	
	66	

67	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	3	of	18	

		

1. Face	Recognition	Prize	Challenge		68	

1.1. Roles	of	IARPA	and	NIST	69	
IARPA	directs	the	FRPC	and	awards	the	prizes.	NIST	is	the	test	laboratory	implementing	the	FRPC	for	IARPA.		Prospective	70	
participants	in	the	FRPC	should	consult	the	following	IARPA	documents	before	reading	this	document.	71	

― IARPA’s	FRPC	challenge.gov	Homepage	72	

― IARPA’s	FRPC	Homepage	73	

― IARPA’s	FRPC	Rules	74	

1.2. Scope	75	
This	document	establishes	a	concept	of	operations	and	an	application	programming	interface	(API)	for	evaluation	of	face	76	
recognition	(FR)	implementations	submitted	to	the	Face	Recognition	Prize	Challenge	(FRPC).		There	are	two	challenges	77	
within	FRPC,	named	“Challenge	IDENT”	and	“Challenge	VERIF”.		Respectively,	these	are	intended	to	attract	the	most	78	
accurate	one-to-many	identification	and	one-to-one	verification	face	recognition	algorithms.	79	

1.3. Audience	80	
Participation	in	FRPC	is	open	to	any	organization	worldwide,	subject	to	a	few	restrictions	(see	[IARPA-FRPC].		There	is	no	81	
charge	for	participation.		The	target	audience	is	researchers	and	developers	of	FR	algorithms.	While	NIST	intends	to	82	
evaluate	stable	technologies	that	could	be	readily	made	operational,	the	test	is	also	open	to	experimental,	prototype	and	83	
other	technologies.		All	algorithms	must	be	submitted	as	implementations	of	the	APIs	defined	in	this	document.	84	

1.4. Important	Dates	85	
Algorithms	must	be	submitted	to	NIST	by	the	date	given	on	the	IARPA	challenge.gov	website.	86	

1.5. Rules	for	participation	87	

1.5.1. Participation	agreement	88	
A	participant	must	properly	follow,	complete,	and	submit	the	FRPC	Participation	Agreement	(available	from	the	FRPC	89	
website).		This	must	be	done	once,	either	prior	or	in	conjunction	with	the	very	first	algorithm	submission.		It	is	not	90	
necessary	to	do	this	for	each	submitted	implementation	thereafter.	91	

1.5.2. Options	for	participation	92	
All	submissions	shall	implement	exactly	one	of	the	functionalities	defined	in	Table	1.		A	library	shall	not	implement	the	API	93	
of	more	than	one	challenge	class.	94	

Table	1	–	FRPC	Challenge	Participation	95	

Function	 Challenge	IDENT	 Challenge	VERIF	
API	requirements	 3.2	 3.3	

1.5.3. Number	of	submissions	96	
Participants	may	submit	zero,	one,	or	two	(0	-	2)	algorithms	to	Challenge	IDENT.		Participants	may	enter	zero	or	one	(0	-	1)	97	
algorithms	to	Challenge	VERIF.	98	

1.5.4. Validation	99	
All	participants	must	run	their	software	through	the	provided	FRPC	validation	package	prior	to	submission.		The	validation	100	
package	will	be	made	available	at	https://github.com/usnistgov/frpc.		The	purpose	of	validation	is	to	ensure	consistent	101	
algorithm	output	between	the	participant’s	execution	and	NIST’s	execution.	102	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	4	of	18	

		

1.6. Reporting	103	
IARPA	will	announce	the	winners	of	the	Prize	Challenge.		NIST	may	additionally	report	results	in	workshops,	conferences,	104	
conference	papers	and	presentations,	journal	articles	and	technical	reports.	105	

Important:		This	is	an	open	test	in	which	NIST	will	identify	the	algorithm	and	the	developing	organization.	106	
Algorithm	results	will	be	attributed	to	the	developer.	Results	will	be	machine	generated	(i.e.	scripted)	and	will	107	
include	timing,	accuracy	and	other	performance	results.	These	will	be	posted	alongside	results	from	other	108	
implementations.	109	

1.7. 	Hardware	specification	110	
NIST	intends	to	support	high	performance	by	specifying	the	runtime	hardware	beforehand.	There	are	several	types	of	111	
computer	blades	that	may	be	used	in	the	testing.		Each	CPU	has	512K	cache.	The	bus	runs	at	667	Mhz.		The	main	memory	112	
is	192	GB	Memory	as	24	8GB	modules.		We	anticipate	that	16	processes	can	be	run	without	time	slicing,	though	NIST	will	113	
handle	all	multiprocessing	work	via	fork()1.		Participant-initiated	multiprocessing	is	not	permitted.	114	

NIST	is	requiring	use	of	64	bit	implementations	throughout.			115	

1.7.1. Central	Processing	Unit	(CPU)-only	platforms	116	
Algorithms	running	only	on	CPUs	will	be	executed	on	machines	equipped	with	Intel	Xeon	X5690	3.47	GHz	CPUs.		117	

1.7.2. Duel	Intel	Xeon	E5-2630	v4	2.2	GHz	-	Graphics	Processing	Units	(GPU)-enabled	platforms	118	
Algorithms	running	on	GPUs	will	be	executed	on	machines	equipped	with		119	

― Intel	Xeon	E5-2695	v3	3.3	GHz	CPUs	and	120	

― Dual	NVIDIA	Tesla	K40	GPUs.	121	

All	GPU-enabled	machines	will	be	running	CUDA	version	7.5.		cuDNN	v5	for	CUDA	7.5	will	also	be	installed	on	these	122	
machines.		Implementations	that	use	GPUs	will	only	be	run	on	GPU-enabled	machines.			123	

1.8. Operating	system,	compilation,	and	linking	environment	124	

The	operating	system	that	the	submitted	implementations	shall	run	on	will	be	released	as	a	downloadable	file	accessible	125	
from	http://nigos.nist.gov:8080/evaluations/CentOS-7-x86_64-Everything-1511.iso,	which	is	the	64-bit	version	of	CentOS	126	
7.2	running	Linux	kernel	3.10.0.	127	

For	this	test,	Windows	machines	will	not	be	used.	Windows-compiled	libraries	are	not	permitted.		All	software	must	run	128	
under	CentOS	7.2.	129	

NIST	will	link	the	provided	library	file(s)	to	our	C++	language	test	drivers.		Participants	are	required	to	provide	their	library	130	
in	a	format	that	is	dynamically-linkable	using	the	C++11	compiler,	g++	version	4.8.5.			131	

A	typical	link	line	might	be	132	
g++ -std=c++11 -I. -Wall -m64 -o frpc frpc.cpp -L. –lfrpc_1N_acme_0_cpu 133	

The	Standard	C++	library	should	be	used	for	development.		The	prototypes	from	this	document	will	be	written	to	a	file	134	
"frpc.h"	which	will	be	included	via		135	

#include	<frpc.h>	

The	header	files	will	be	made	available	to	implementers	at	https://github.com/usnistgov/frpc.			136	

All	compilation	and	testing	will	be	performed	on	x86_64	platforms.		Thus,	participants	are	strongly	advised	to	verify	137	
library-level	compatibility	with	g++	(on	an	equivalent	platform)	prior	to	submitting	their	software	to	NIST	to	avoid	linkage	138	
problems	later	on	(e.g.	symbol	name	and	calling	convention	mismatches,	incorrect	binary	file	formats,	etc.).	139	

																																																																				
1	http://man7.org/linux/man-pages/man2/fork.2.html	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	5	of	18	

		

1.9. Software	and	documentation	140	

1.9.1. Library	and	platform	requirements	141	
Participants	shall	provide	NIST	with	binary	code	only	(i.e.	no	source	code).		The	implementation	should	be	submitted	in	142	
the	form	of	a	dynamically-linked	library	file.	143	

The	core	library	shall	be	named	according	to	Table	2.		Additional	supplemental	libraries	may	be	submitted	that	support	144	
this	“core”	library	file	(i.e.	the	“core”	library	file	may	have	dependencies	implemented	in	these	other	libraries).		145	
Supplemental	libraries	may	have	any	name,	but	the	“core”	library	must	be	dependent	on	supplemental	libraries	in	order	146	
to	be	linked	correctly.	The	only	library	that	will	be	explicitly	linked	to	the	FRPC	test	driver	is	the	“core”	library.	147	

Intel	Integrated	Performance	Primitives	(IPP)	®	libraries	are	permitted	if	they	are	delivered	as	a	part	of	the	developer-148	
supplied	library	package.	It	is	the	provider’s	responsibility	to	establish	proper	licensing	of	all	libraries.		The	use	of	IPP	149	
libraries	shall	not	prevent	running	on	CPUs	that	do	not	support	IPP.		Please	take	note	that	some	IPP	functions	are	150	
multithreaded	and	threaded	implementations	are	prohibited.	151	

NIST	will	report	the	size	of	the	supplied	libraries.		152	

Table	2	–	Implementation	library	filename	convention	153	

Form	 libfrpc_challenge_provider_sequence_processor.ending	
Underscore	
delimited	parts	
of	the	filename	

libfrpc	 challenge	 provider	 sequence	 processor	 ending	

Description	 First	part	of	the	
name,	required	
to	be	this.	

“1N”	for	IDENT	
implementation	
“11”	for	VERIF	
implementation	

Single	word,	non-
infringing	name	of	
the	main	provider	
EXAMPLE:		Acme	

A	one	digit	decimal	
identifier	to	start	at	0	
and	incremented	by	
1	for	each	library	
sent	to	NIST.	

“gpu”	if	
implementation	
uses	GPUs;	
“cpu”	otherwise	
	
	

.so	

Example	 libfrpc_1N_acme_0_cpu.so	

1.9.2. Configuration	and	developer-defined	data	154	
The	implementation	under	test	may	be	supplied	with	configuration	files	and	supporting	data	files.		NIST	will	report	the	155	
size	of	the	supplied	configuration	files.	156	

1.9.3. Submission	folder	hierarchy	157	
Participant	submissions	shall	contain	the	following	folders	at	the	top	level	158	

― lib/	-	contains	all	participant-supplied	software	libraries	159	

― config/	-	contains	all	configuration	and	developer-defined	data	160	

― doc/	-	contains	any	participant-provided	documentation	regarding	the	submission	161	

― validation/	-	contains	validation	output	162	

1.9.4. Installation	and	usage	163	
The	implementation	shall	be	installable	using	simple	file	copy	methods.	It	shall	not	require	the	use	of	a	separate	164	
installation	program	and	shall	be	executable	on	any	number	of	machines	without	requiring	additional	machine-specific	165	
license	control	procedures	or	activation.		The	implementation	shall	not	use	nor	enforce	any	usage	controls	or	limits	based	166	
on	licenses,	number	of	executions,	presence	of	temporary	files,	etc.		The	implementation	shall	remain	operable	for	at	167	
least	six	months	from	the	submission	date.	168	

1.9.5. Documentation	169	
Participants	shall	provide	documentation	of	additional	functionality	or	behavior	beyond	that	specified	here.		The	170	
documentation	must	define	all	(non-zero)	developer-defined	error	or	warning	return	codes.	171	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	6	of	18	

		

1.9.6. Modes	of	operation	172	
Implementations	shall	not	require	NIST	to	switch	“modes”	of	operation	or	algorithm	parameters.	For	example,	the	use	of	173	
two	different	feature	extractors	must	either	operate	automatically	or	be	split	across	two	separate	library	submissions.	174	

1.10. Runtime	behavior	175	

1.10.1. Interactive	behavior,	stdout,	logging	176	
The	implementation	will	be	tested	in	non-interactive	“batch”	mode	(i.e.	without	terminal	support).	Thus,	the	submitted	177	
library	shall:	178	

- Not	use	any	interactive	functions	such	as	graphical	user	interface	(GUI)	calls,	or	any	other	calls	which	require	179	
terminal	interaction	e.g.	reads	from	“standard	input”.	180	

- Run	quietly,	i.e.	it	should	not	write	messages	to	"standard	error"	and	shall	not	write	to	“standard	output”.	181	

- Only	if	requested	by	NIST	for	debugging,	include	a	logging	facility	in	which	debugging	messages	are	written	to	a	182	
log	file	whose	name	includes	the	provider	and	library	identifiers	and	the	process	PID.	183	

1.10.2. Exception	handling	184	
The	application	should	include	error/exception	handling	so	that	in	the	case	of	a	fatal	error,	the	return	code	is	still	185	
provided	to	the	calling	application.	186	

1.10.3. External	communication	187	
Processes	running	on	NIST	hosts	shall	not	side-effect	the	runtime	environment	in	any	manner,	except	for	memory	188	
allocation	and	release.		Implementations	shall	not	write	any	data	to	external	resource	(e.g.	server,	file,	connection,	or	189	
other	process),	nor	read	from	such,	nor	otherwise	manipulate	it.	If	detected,	NIST	will	take	appropriate	steps,	including	190	
but	not	limited	to,	cessation	of	evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	191	
documentation	of	the	activity	in	published	reports.	192	

1.10.4. Stateless	behavior	193	
All	components	in	this	test	shall	be	stateless,	except	as	noted.			This	applies	to	face	detection,	feature	extraction	and	194	
matching.		Thus,	all	functions	should	give	identical	output,	for	a	given	input,	independent	of	the	runtime	history.			NIST	195	
will	institute	appropriate	tests	to	detect	stateful	behavior.	If	detected,	NIST	will	take	appropriate	steps,	including	but	not	196	
limited	to,	cessation	of	evaluation	of	all	implementations	from	the	supplier,	notification	to	the	provider,	and	197	
documentation	of	the	activity	in	published	reports.		198	

1.11. Single-thread	requirement	and	parallelization	199	
Implementations	must	run	in	single-threaded	mode,	because	NIST	will	parallelize	the	test	by	dividing	the	workload	across	200	
many	cores	and	many	machines.		Implementations	must	ensure	that	there	are	no	issues	with	their	software	being	201	
parallelized	via	the	fork()	function	–	this	applies	to	both	GPU	and	CPU	implementations	submitted	to	FRPC.	202	

1.12. Time	limits	203	
The	elemental	functions	of	the	implementations	shall	execute	under	the	time	constraints	of	Table	3.		These	time	limits	204	
apply	to	the	function	call	invocations	defined	in	section	3.		Assuming	the	times	are	random	variables,	NIST	cannot	regulate	205	
the	maximum	value,	so	the	time	limits	are	90-th	percentiles.		This	means	that	90%	of	all	operations	should	take	less	than	206	
the	identified	duration.		Timing	will	be	estimated	from	at	least	1000	separate	invocations	of	each	elemental	function.	207	

The	time	limits	apply	per	image.	208	

Table	3	–	Processing	time	limits	in	milliseconds,	per	640	x	480	color	image,	on	a	single	CPU	or	GPU	209	

Function	 Challenge	IDENT	(1:N)	 Challenge	VERIF	(1:1)	
Template	Generation	 2000	 2000	
1:N	finalization	(on	gallery	of	100K	enrolled	templates)	 3600000	 NA	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	7	of	18	

		

1:N	Search	(on	100K	enrolled	templates)	 25	 NA	
1:1	Comparison	 NA	 1	

	210	

2. Data	structures	supporting	the	API	211	

2.1. Requirement	212	
FRPC	participants	shall	implement	the	relevant	C++	prototyped	interfaces	of	clause	3.		C++	was	chosen	in	order	to	make	213	
use	of	some	object-oriented	features.	214	

2.2. File	formats	and	data	structures	215	

2.2.1. Overview	216	
In	this	face	recognition	test,	an	individual	is	represented	by	a	K	=	1	two-dimensional	facial	image.		Most	images	will	217	
contain	exactly	face.		In	a	small	fraction	of	the	images,	other,	smaller,	faces	will	appear	in	the	background.		Algorithms	218	
should	detect	one	foreground	face	in	each	image	and	produce	one	template.	219	

Table	4	–	Structure	for	a	single	image	220	

C++	code	fragment	 Remarks	
typedef struct Image 	
{ 	
 uint16_t width; Number	of	pixels	horizontally	
 uint16_t height; Number	of	pixels	vertically	
 uint16_t depth; Number	of	bits	per	pixel.	Legal	values	are	8	and	24.	
 std::shared_ptr<uint8_t> data; Managed	pointer	to	raster	scanned	data.	Either	RGB	color	or	

intensity.	
If	image_depth	==	24	this	points	to	3WH	bytes		RGBRGBRGB...	
If	image_depth	==		8	this	points	to		WH	bytes		IIIIIII	

} Image; 	

2.2.2. Data	structure	for	eye	coordinates	221	
Implementations	have	the	option	to	return	eye	coordinates	of	each	facial	image.		This	function,	while	not	necessary	for	a	222	
recognition	test,	will	assist	NIST	in	assuring	the	correctness	of	the	test	database.		The	primary	mode	of	use	will	be	for	NIST	223	
to	inspect	images	for	which	eye	coordinates	are	not	returned,	or	differ	between	implementations.		The	returning	of	eye	224	
coordinates	is	optional	for	implementations.	For	those	who	choose	not	to	implement	this,	both	isLeftAssigned	and	225	
isRightAssigned	should	be	set	to	false.	226	

The	eye	coordinates	shall	follow	the	placement	semantics	of	the	ISO/IEC	19794-5:2005	standard	-	the	geometric	227	
midpoints	of	the	endocanthion	and	exocanthion	(see	clause	5.6.4	of	the	ISO	standard).	228	

Sense:	The	label	"left"	refers	to	subject's	left	eye	(and	similarly	for	the	right	eye),	such	that	xright	<	xleft.	229	

Table	5	–	Structure	for	a	pair	of	eye	coordinates	230	

C++	code	fragment		 Remarks	
typedef struct EyePair 	
{ 	
 bool isLeftAssigned; If	the	subject’s	left	eye	coordinates	have	been	computed	and	assigned	

successfully,	this	value	should	be	set	to	true,	otherwise	false.	
 bool isRightAssigned; If	the	subject’s	right	eye	coordinates	have	been	computed	and	assigned	

successfully,	this	value	should	be	set	to	true,	otherwise	false.	
 uint16_t xleft; X	and	Y	coordinate	of	the	center	of	the	subject's	left	eye.		If	the	eye	

coordinate	is	out	of	range	(e.g.	x	<	0	or	x	>=	width),	isLeftAssigned	
should	be	set	to	false.	

 uint16_t yleft;

 uint16_t xright; X	and	Y	coordinate	of	the	center	of	the	subject's	right	eye.		If	the	eye	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	8	of	18	

		

 uint16_t yright; coordinate	is	out	of	range	(e.g.	x	<	0	or	x	>=	width),	
isRightAssigned	should	be	set	to	false.	

} EyePair; 	

2.2.3. Template	role	231	
Labels	describing	the	type/role	of	the	template	to	be	generated	will	be	provided	as	input	to	template	generation.		This	232	
supports	asymmetric	algorithms	where	the	enrollment	and	recognition	templates	may	differ	in	content	and	size.	233	

Table	6	–	Labels	describing	template	role	234	

Label	as	C++	enumeration	 Meaning	
enum class TemplateRole { 	
 Enrollment_1N, Enrollment	template	for	1:N	identification	
 Search_1N, Search	template	for	1:N	identification	
 Enrollment_11, Enrollment	template	for	1:1	comparison	
 Verification_11 Verification	template	for	1:1	comparison	
}; 	

2.2.4. Data	type	for	similarity	scores	235	
Identification	and	verification	functions	shall	return	a	measure	of	the	similarity	between	the	face	data	contained	in	the	236	
two	templates.		The	datatype	shall	be	an	eight	byte	double	precision	real.		The	legal	range	is	[0,	DBL_MAX],	where	the	237	
DBL_MAX	constant	is	larger	than	practically	needed	and	defined	in	the	<climits>	include	file.	Larger	values	indicate	more	238	
likelihood	that	the	two	samples	are	from	the	same	person.	239	

Providers	are	cautioned	that	algorithms	that	natively	produce	few	unique	values	(e.g.	integers	on	[0,127])	will	be	240	
disadvantaged	by	the	inability	to	set	a	threshold	precisely,	as	might	be	required	to	attain	a	false	match	rate	of	exactly	241	
0.0001,	for	example.	242	

2.2.5. File	structure	for	enrolled	template	collection	243	
To	support	the	Challenge	IDENT	(1:N)	test,	NIST	will	concatenate	enrollment	templates	into	a	single	large	file,	the	EDB	(for	244	
enrollment	database).		The	EDB	is	a	simple	binary	concatenation	of	proprietary	templates.		There	is	no	header.	There	are	245	
no	delimiters.	The	EDB	may	be	many	gigabytes	in	length.	246	

This	file	will	be	accompanied	by	a	manifest;	this	is	an	ASCII	text	file	documenting	the	contents	of	the	EDB.		The	manifest	247	
has	the	format	shown	as	an	example	in	Table	7.		If	the	EDB	contains	N	templates,	the	manifest	will	contain	N	lines.		The	248	
fields	are	space	(ASCII	decimal	32)	delimited.		There	are	three	fields.		Strictly	speaking,	the	third	column	is	redundant.	249	

Important:	If	a	call	to	the	template	generation	function	fails,	or	does	not	return	a	template,	NIST	will	include	the	Template	250	
ID	in	the	manifest	with	size	0.		Implementations	must	handle	this	appropriately.	251	

Table	7	–	Enrollment	dataset	template	manifest	252	

Field	name	 Template	ID	 Template	Length	 Position	of	first	byte	in	EDB	
Datatype	required	 std::string	 Unsigned	decimal	integer	 Unsigned	decimal	integer	
Example	lines	of	a	manifest	file	appear	
to	the	right.	Lines	1,	2,	3	and	N	appear.	

90201744	 1024	 0	
person01	 1536	 1024	
7456433	 512	 2560	
...	 	 	
subject12	 1024	 307200000	

	253	
The	EDB	scheme	avoids	the	file	system	overhead	associated	with	storing	millions	of	small	individual	files.	254	

2.2.6. Data	structure	for	result	of	an	identification	search	255	
All	identification	searches	shall	return	a	candidate	list	of	a	NIST-specified	length.		The	list	shall	be	sorted	with	the	most	256	
similar	matching	entries	list	first	with	lowest	rank.		The	data	structure	shall	be	that	of	Table	8.	257	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	9	of	18	

		

Table	8	–	Structure	for	a	candidate	258	

	 C++	code	fragment	 Remarks	
1. typedef struct Candidate 	
2. { 	
3. bool isAssigned; If	the	candidate	computation	succeeded,	this	value	is	set	to	true.		False	otherwise.	
4. std::string templateId; The	Template	ID	from	the	enrollment	database	manifest	defined	in	clause	2.2.5.	
5. double similarityScore; Measure	of	similarity	between	the	identification	template	and	the	enrolled	candidate.	

Higher	scores	mean	more	likelihood	that	the	samples	are	of	the	same	person.	

An	algorithm	is	free	to	assign	any	value	to	a	candidate.		The	distribution	of	values	will	have	
an	impact	on	the	appearance	of	a	plot	of	false-negative	and	false-positive	identification	
rates.	

6. } Candidate; 	
	259	

2.2.7. Data	structure	for	return	value	of	API	function	calls	260	

Table	9	–	Enumeration	of	return	codes	261	

Return	code	as	C++	enumeration	 Meaning	
enum class ReturnCode { 	
 Success=0, Success	
 ConfigError=1, Error	reading	configuration	files	
 RefuseInput=2, Elective	refusal	to	process	the	input,	e.g.	because	cannot	handle	greyscale	
 ExtractError=3, Involuntary	failure	to	process	the	image,	e.g.	after	catching	exception		
 ParseError=4, Cannot	parse	the	input	data	
 TemplateCreationError=5, Elective	refusal	to	produce	a	“non-blank”	template	(e.g.	insufficient	pixels	

between	the	eyes)	
 VerifTemplateError=6, For	matching,	either	or	both	of	the	input	templates	were	result	of	failed	

feature	extraction	
 NumDataError=7, The	implementation	cannot	support	the	number	of	images	
 TemplateFormatError=8, Template	file	is	in	an	incorrect	format	or	defective	
 EnrollDirError=9, An	operation	on	the	enrollment	directory	failed	(e.g.	permission,	space)	
 InputLocationError=10 Cannot	locate	the	input	data	–	the	input	files	or	names	seem	incorrect	
 GPUError=11, There	was	a	problem	setting	or	accessing	the	GPU	
 VendorError=12 Vendor-defined	failure.		Failure	codes	must	be	documented	and	

communicated	to	NIST	with	the	submission	of	the	implementation	under	test.	
}; 	

	262	

Table	10	–	ReturnStatus	structure	263	

C++	code	fragment	 Meaning	
struct ReturnStatus { 	
 ReturnCode code; Return	Code	
 std::string info; Optional	information	string	
 // constructors 	
}; 	

	264	

3. API	specification	265	

Please	note	that	included	with	the	FRPC	validation	package	(available	at	https://github.com/usnistgov/frpc)	is	a	“null”	266	
implementation	of	this	API.		The	null	implementation	has	no	real	functionality	but	demonstrates	mechanically	how	one	267	
could	go	about	implementing	this	API.	268	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	10	of	18	
	

3.1. Namespace	269	
All	data	structures	and	API	interfaces/function	calls	will	be	declared	in	the	FRPC	namespace.	270	

3.2. Challenge	IDENT	(1:N)	271	

3.2.1. Overview	272	
The	1:N	identification	application	proceeds	in	two	phases,	enrollment	and	identification.		The	identification	phase	273	
includes	separate	probe	feature	extraction	stage,	and	a	search	stage.	274	

The	design	reflects	the	following	testing	objectives	for	1:N	implementations.	275	

- support	distributed	enrollment	on	multiple	machines,	with	multiple	processes	running	in	parallel	
- allow	recovery	after	a	fatal	exception,	and	measure	the	number	of	occurrences	
- allow	NIST	to	copy	enrollment	data	onto	many	machines	to	support	parallel	testing	
- respect	the	black-box	nature	of	biometric	templates	
- extend	complete	freedom	to	the	provider	to	use	arbitrary	algorithms	
- support	measurement	of	duration	of	core	function	calls	
- support	measurement	of	template	size	

Table	11	–	Procedural	overview	of	the	Challenge	IDENT	(1:N)	test	276	

Ph
as
e	 #	 Name	 Description	 Performance	Metrics	to	be	

reported	by	NIST	

En
ro
llm

en
t	

E1	 Initialization	 initializeEnrollmentSession()	

Give	the	implementation	the	name	of	a	directory	where	any	provider-
supplied	configuration	data	will	have	been	placed	by	NIST.		This	location	
will	otherwise	be	empty.	

The	implementation	is	permitted	read-only	access	to	the	configuration	
directory.	

	

E2	 Parallel	
Enrollment	

createTemplate(TemplateRole=Enrollment_1N)	

For	each	of	N	individuals,	pass	K	=	1	image	of	the	individual	to	the	
implementation	for	conversion	to	a	template.		The	implementation	will	
return	a	template	to	the	calling	application.	

NIST's	calling	application	will	be	responsible	for	storing	all	templates	as	
binary	files.		These	will	not	be	available	to	the	implementation	during	
this	enrollment	phase.	

Multiple	instances	of	the	calling	application	may	run	simultaneously	or	
sequentially.		These	may	be	executing	on	different	computers.		The	
same	person	will	not	be	enrolled	twice.		

Statistics	of	the	times	needed	to	
enroll	an	individual.	

Statistics	of	the	sizes	of	created	
templates.	

	

	

The	incidence	of	failed	template	
creations.	

E3	 Finalization	 finalizeEnrollment()	

Permanently	finalize	the	enrollment	directory.		This	supports,	for	
example,	adaptation	of	the	image-processing	functions,	adaptation	of	
the	representation,	writing	of	a	manifest,	indexing,	and	computation	of	
statistical	information	over	the	enrollment	dataset.	

The	implementation	is	permitted	read-write-delete	access	to	the	
enrollment	directory	during	this	phase.	

Size	of	the	enrollment	database	
as	a	function	of	population	size	
N.	

Duration	of	this	operation.		The	
time	needed	to	execute	this	
function	shall	be	reported	with	
the	preceding	enrollment	times.	

Pr
ob

e	
Te
m
pl
at
e	

Cr
ea
tio

n	

S1	 Initialization	 initializeProbeTemplateSession()	

Tell	the	implementation	the	location	of	an	enrollment	directory.		The	
implementation	could	look	at	the	enrollment	data.	

The	implementation	is	permitted	read-only	access	to	the	enrollment	
directory	during	this	phase.		Statistics	of	the	time	needed	for	this	
operation.	

Statistics	of	the	time	needed	for	
this	operation.	

	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	11	of	18	
	

S2	 Template	
preparation	

createTemplate(TemplateRole=Search_1N)	

For	each	probe,	create	a	template	from	K	=	1	image.		This	operation	will	
generally	be	conducted	in	a	separate	process	invocation	to	step	S3.			

The	result	of	this	step	is	a	search	template.	
	
Multiple	instances	of	the	calling	application	may	run	simultaneously	or	
sequentially.		These	may	be	executing	on	different	computers.			

Statistics	of	the	time	needed	for	
this	operation.	

Statistics	of	the	size	of	the	
search	template.	

Se
ar
ch
	

S3	 Initialization	 initializeIdentificationSession()	

Tell	the	implementation	the	location	of	an	enrollment	directory.		The	
implementation	should	read	all	or	some	of	the	enrolled	data	into	main	
memory,	so	that	searches	can	commence.	

The	implementation	is	permitted	read-only	access	to	the	enrollment	
directory	during	this	phase.	

Statistics	of	the	time	needed	for	
this	operation.	

	

S4	 Search	 identifyTemplate()	

A	template	is	searched	against	the	enrollment	database.			

Statistics	of	the	time	needed	for	
this	operation.	

Accuracy	metrics	-	Type	I	+	II	
error	rates.	

Failure	rates.	

3.2.2. API	277	

3.2.2.1. Interface	278	
The	software	under	test	must	implement	the	interface	IdentInterface	by	subclassing	this	class	and	implementing	279	
each	method	specified	therein.	280	

	 C++	code	fragment		 Remarks	
1. Class IdentInterface 	
2. {

public:
	

3. virtual ReturnStatus initializeEnrollmentSession(
 const std::string &configDir) = 0;

	

4. virtual ReturnStatus createTemplate(
 const Image &face,
 TemplateRole role,
 std::vector<uint8_t> &templ,
 EyePair &eyeCoordinates) = 0;

	

5. virtual ReturnStatus finalizeEnrollment(
 const std::string &enrollmentDir,
 const std::string &edbName,
 const std::string &edbManifestName) = 0;

	

6. virtual ReturnStatus initializeProbeTemplateSession(
 const std::string &configDir,
 const std::string &enrollmentDir) = 0;

	

7. virtual ReturnStatus initializeIdentificationSession(
 const std::string &configDir,
 const std::string &enrollmentDir) = 0;

	

8. virtual ReturnStatus identifyTemplate(
 const TattooRep &idTemplate,
 const uint32_t candidateListLength,
 std::vector<Candidate> &candidateList,
 bool &decision) = 0;

	

9.	 virtual ReturnStatus setGPU(uint8_t gpuNum) = 0; 	
10.	 static std::shared_ptr<IdentInterface> getImplementation(); Factory	method	to	return	a	managed	pointer	

to	the	IdentInterface	object.		This	
function	is	implemented	by	the	submitted	
library	and	must	return	a	managed	pointer	to	
the	IdentInterface	object.	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	12	of	18	
	

11. }; 	
	281	
There	is	one	class	(static)	method	declared	in	IdentInterface.	getImplementation()	which	must	also	be	282	
implemented.	This	method	returns	a	shared	pointer	to	the	object	of	the	interface	type,	an	instantiation	of	the	283	
implementation	class.	A	typical	implementation	of	this	method	is	also	shown	below	as	an	example.	284	
	285	
	 C++	code	fragment		 Remarks	
 #include “frpc.h”

using namespace FRPC;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<IdentInterface>
IdentInterface::getImplementation()
{
 return std::make_shared<NullImpl>();
}

// Other implemented functions

	

	286	

3.2.2.2. Initialization	of	the	enrollment	session	287	
Before	any	enrollment	feature	extraction	calls	are	made,	the	NIST	test	harness	will	call	the	initialization	function	of	Table	288	
12.	289	

Table	12	–	Enrollment	initialization		290	

Prototype	 ReturnStatus	initializeEnrollmentSession(
const	std::string	&configDir);	 Input	

Description	
	

This	function	initializes	the	implementation	under	test	and	sets	all	needed	parameters.		This	function	will	be	called	
N=1	times	by	the	NIST	application	immediately	before	any	M	³	1	calls	to	
createTemplates(TemplateRole=Enrollment_1N);	

Input	Parameters	 configDir	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.	

Output	
Parameters	

None	 	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	

3.2.2.3. GPU	Index	Specification	291	
For	implementations	using	GPUs,	the	function	of	Table	13	specifies	a	sequential	index	for	which	GPU	device	to	execute	292	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	293	

Table	13	–	GPU	index	specification	294	

Prototypes	 ReturnStatus	setGPU	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

Input	
Parameters	

gpuNum	 Index	number	representing	which	GPU	to	use.	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	

3.2.2.4. Enrollment	295	
An	Image	is	converted	to	a	single	enrollment	template	using	the	function	of	Table	14.	296	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	13	of	18	
	

Table	14	–	Enrollment	feature	extraction	297	

Prototypes	 ReturnStatus	createTemplate(
const	Image	&face,	 Input	
TemplateRole	role,	 Input	
std::vector<uint8_t>	&templ,	
EyePair	&eyeCoordinates);	

Output	
Output	

Description	 Takes	an	Image	and	outputs	a	proprietary	template	and,	optionally,	associated	eye	coordinates.		The	vector	to	store	
the	template	will	be	initially	empty,	and	it	is	up	to	the	implementation	to	populate	it	with	the	appropriate	data.			

For	enrollment	templates	(TemplateRole=Enrollment_1N):	If	the	function	executes	correctly	(i.e.	returns	a	successful	
return	code),	the	NIST	calling	application	will	store	the	template.		The	NIST	application	will	concatenate	the	templates	
and	pass	the	result	to	the	enrollment	finalization	function	(see	section	13).		When	the	implementation	fails	to	produce	
a	template	(i.e.	returns	a	non-successful	return	code),	it	shall	still	return	a	blank	template	(which	can	be	zero	bytes	in	
length).	The	template	will	be	included	in	the	enrollment	database/manifest	like	all	other	enrollment	templates,	but	is	
not	expected	to	contain	any	feature	information.		

IMPORTANT.		NIST's	application	writes	the	template	to	disk.		Any	data	needed	during	subsequent	searches	should	be	
included	in	the	template,	or	created	from	the	templates	during	the	enrollment	finalization	function	of	section	13	

For	identification/probe	templates	(TemplateRole=Search_1N):	The	NIST	calling	application	may	commit	the	template	
to	permanent	storage,	or	may	keep	it	only	in	memory	(the	developer	implementation	does	not	need	to	know).		If	the	
function	returns	a	non-successful	return	status,	the	output	template	will	not	be	used	in	subsequent	search	operations.			

Input	
Parameters	

face	 Input	face	image	
role	 Label	describing	the	type/role	of	the	template	to	be	generated.		In	this	case,	it	will	either	be	

Enrollment_1N	or	Search_1N.	
Output	
Parameters	

templ	 The	output	template.		The	format	is	entirely	unregulated.		This	will	be	an	empty	vector	when	
passed	into	the	function,	and	the	implementation	can	resize	and	populate	it	with	the	appropriate	
data.	

eyeCoordinates	 (Optional)	The	function	may	choose	to	return	the	estimated	eye	centers	for	the	input	face	image.	
Return	Value	 See	Table	9	for	all	valid	return	code	values.	

3.2.2.5. Finalize	enrollment	298	
After	all	templates	have	been	created,	the	function	of	Table	15	will	be	called.		This	freezes	the	enrollment	data.		After	this	299	
call	the	enrollment	dataset	will	be	forever	read-only.			300	

The	function	allows	the	implementation	to	conduct,	for	example,	statistical	processing	of	the	feature	data,	indexing	and	301	
data	re-organization.		The	function	may	alter	the	file	structure.		It	may	increase	or	decrease	the	size	of	the	stored	data.		302	
No	output	is	expected	from	this	function,	except	a	return	code.			303	

Implementations	shall	not	move	the	input	data.			Implementations	shall	not	point	to	the	input	data.		Implementations	304	
should	not	assume	the	input	data	will	be	readable	after	the	call.		Implementations	must,	at	a	minimum,	copy	the	input	305	
data	or	otherwise	extract	what	is	needed	for	search.	306	

Table	15	–	Enrollment	finalization	307	

Prototypes	 ReturnStatus	finalizeEnrollment(
const	std::string	&enrollmentDir,	 Input	
const	std::string	&edbName,	 Input	
const	std::string	&edbManifestName);	 Input	

Description	 This	function	takes	the	name	of	the	top-level	directory	where	the	enrollment	database	(EDB)	and	its	manifest	have	
been	stored.			These	are	described	in	section	2.2.5.		The	enrollment	directory	permissions	will	be	read	+	write.			

The	function	supports	post-enrollment,	developer-optional,	book-keeping	operations,	statistical	processing	and	data	
re-ordering	for	fast	in-memory	searching.			The	function	will	generally	be	called	in	a	separate	process	after	all	the	
enrollment	processes	are	complete.	

This	function	should	be	tolerant	of	being	called	two	or	more	times.		Second	and	third	invocations	should	probably	do	
nothing.	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	14	of	18	
	

Input	
Parameters	

enrollmentDir	 The	top-level	directory	in	which	enrollment	data	was	placed.	This	variable	allows	an	
implementation	to	locate	any	private	initialization	data	it	elected	to	place	in	the	directory.	

edbName	 The	name	of	a	single	file	containing	concatenated	templates,	i.e.	the	EDB	of	section	2.2.5.	
While	the	file	will	have	read-write-delete	permission,	the	implementation	should	only	alter	
the	file	if	it	preserves	the	necessary	content,	in	other	files	for	example.	
The	file	may	be	opened	directly.		It	is	not	necessary	to	prepend	a	directory	name.		This	is	a	
NIST-provided	input	–	implementers	shall	not	internally	hard-code	or	assume	any	values.	

edbManifestName	 The	name	of	a	single	file	containing	the	EDB	manifest	of	section	2.2.5.	
The	file	may	be	opened	directly.		It	is	not	necessary	to	prepend	a	directory	name.		This	is	a	
NIST-provided	input	–	implementers	shall	not	internally	hard-code	or	assume	any	values.	

Output	
Parameters	

None	 	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	

3.2.2.6. Probe	Template	Feature	Extraction	Initialization	308	
Before	Images	are	sent	to	the	identification	feature	extraction	function,	the	test	harness	will	call	the	initialization	function	309	
in	Table	16.	310	

Table	16	–	Probe	template	feature	extraction	initialization		311	

Prototype	 ReturnStatus	initializeProbeTemplateSession(
const	std::string	&configDir,	 Input	
const	std::string	&enrollmentDir);	 Input	

Description	
	

This	function	initializes	the	implementation	under	test	and	sets	all	needed	parameters.		This	function	will	be	
called	once	by	the	NIST	application	immediately	before	any	M	³	1	calls	to	
createTemplates(TemplateRole=Search_1N).		The	implementation	has	read-only	access	to	its	prior	enrollment	
data.	

Input	Parameters	 configDir	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.	

	 enrollmentDir	 The	read-only	top-level	directory	in	which	enrollment	data	was	placed	and	then	
finalized	by	the	implementation.		The	implementation	can	parameterize	subsequent	
template	production	on	the	basis	of	the	enrolled	dataset.	

Output	
Parameters	

none	 	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	

3.2.2.7. Search	Initialization	312	
The	function	of	Table	17	will	be	called	once	prior	to	one	or	more	calls	of	the	searching	function	of	Table	18.		The	function	313	
might	set	static	internal	variables	so	that	the	enrollment	database	is	available	to	the	subsequent	identification	searches.	314	

Table	17	–	Identification	initialization	315	

Prototype	 ReturnStatus	initializeIdentificationSession(
const	string	&configDir,	 Input	
const	string	&enrollmentDir);	 Input	

Description	 This	function	reads	whatever	content	is	present	in	the	enrollmentDir,	for	example	a	manifest	placed	there	by	the	
finalizeEnrollment()	function.	

Input	Parameters	 configDir	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	
run-time	data	files.	

enrollmentDir	 The	read-only	top-level	directory	in	which	enrollment	data	was	placed.	
Return	Value	 See	Table	9	for	all	valid	return	code	values.	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	15	of	18	
	

3.2.2.8. Search	316	
The	function	of	Table	18	compares	a	proprietary	identification	template	against	the	enrollment	data	and	returns	a	317	
candidate	list.	318	

Table	18	–	Identification	search	319	

Prototype	 ReturnStatus	identifyTemplate	(
const	std::vector<uint8_t>	&idTemplate,	 Input	
const	uint32_t	candidateListLength,	 Input	
std::vector<Candidate>	&candidateList,	 Output	
bool	&decision);	 Output	

Description	
	

This	function	searches	a	template	against	the	enrollment	set,	and	outputs	a	list	of	candidates.		The	candidateList	
vector	will	initially	be	empty,	and	the	implementation	shall	populate	the	vector	with	candidateListLength	entries.	

Input	Parameters	 idTemplate	 A	template	from	createTemplate(TemplateRole=Search_1N)	-	If	the	value	returned	
by	that	function	was	non-zero	the	contents	of	idTemplate	will	not	be	used	and	this	
function	(i.e.	identifyTemplate)	will	not	be	called.	

candidateListLength	 The	number	of	candidates	the	search	should	return	
Output	
Parameters	

candidateList	 A	vector	containing	"candidateListLength	"	objects	of	candidates.	The	datatype	is	
defined	in	section	2.2.6.		Each	candidate	shall	be	populated	by	the	
implementation.		The	candidates	shall	appear	in	descending	order	of	similarity	
score	-	i.e.	most	similar	entries	appear	first.	

decision	 A	best	guess	at	whether	there	is	a	mate	within	the	enrollment	database.		If	there	
was	a	mate	found,	this	value	should	be	set	to	true,	Otherwise,	false.	Many	such	
decisions	allow	a	single	point	to	be	plotted	alongside	a	DET.	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	
	320	

NOTE:	 Ordinarily	the	calling	application	will	set	the	input	candidate	list	length	to	operationally	typical	values,	say	0	£	L		£	321	
200,	and	L	<<	N.		We	will	measure	the	dependence	of	search	duration	on	L.	322	

3.3. Challenge	VERIF	(1:1)	323	

3.3.1. Overview	324	
The	1:1	testing	will	proceed	in	the	following	phases:	optional	offline	training;	preparation	of	enrollment	templates;	325	
preparation	of	verification	templates;	and	matching.		Note	that	training,	template	creation,	and	matching	may	all	be	326	
performed	as	separate	processes.		These	are	detailed	in	Table	19.	327	

Table	19	–	Functional	summary	of	the	Challenge	VERIF	(1:1)	test	328	

Phase	 Description	 Performance	Metrics	to	be	reported	by	NIST	
Initialization	 initialize()	

Function	to	read	configuration	data,	if	any.	
None	

Enrollment	 createTemplate(TemplateRole=Enrollment_11)	
Given	K	=	1	input	images	of	an	individual,	the	implementation	
will	create	a	proprietary	enrollment	template.		NIST	will	
manage	storage	of	these	templates.	

Statistics	of	the	time	needed	to	produce	a	template.	
Statistics	of	template	size.	Rate	of	failure	to	produce	a	
template	

Verification	 createTemplate(TemplateRole=Verification_11)	
Given	K	=	1	input	images	of	an	individual,	the	implementation	
will	create	a	proprietary	verification	template.		NIST	will	
manage	storage	of	these	templates.	

Statistics	of	the	time	needed	to	produce	a	template.	
Statistics	of	template	size.	Rate	of	failure	to	produce	a	
template.	

Matching	(i.e.	
comparison)	

matchTemplates()	
Given	a	proprietary	enrollment	and	a	proprietary	verification	
template,	compare	them	to	produce	a	similarity	score.		

Statistics	of	the	time	taken	to	compare	two	templates.	
Accuracy	measures,	primarily	reported	as	DETs,	
including	for	partitions	of	the	input	datasets.	

	329	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	16	of	18	
	

NIST	requires	that	these	operations	may	be	executed	in	a	loop	in	a	single	process	invocation,	or	as	a	sequence	of	independent	process	330	
invocations,	or	a	mixture	of	both.	331	

3.3.2. API	332	

3.3.2.1. Interface	333	
The	software	under	test	must	implement	the	interface	VerifInterface	by	subclassing	this	class	and	implementing	334	
each	method	specified	therein.	335	

	 C++	code	fragment		 Remarks	
1. class VerifInterface 	
2. {

public:
	

3. virtual ReturnStatus initialize(
 const std::string &configDir) = 0;

	

4. virtual ReturnStatus createTemplate(
 const Image &face,
 TemplateRole role,
 std::vector<uint8_t> &templ,
 EyePair &eyeCoordinates) = 0;

	

5. virtual ReturnStatus matchTemplates(
 const std::vector<uint8_t> &verifTemplate,
 const std::vector<uint8_t> &enrollTemplate,
 double &similarity) = 0;

	

6.	 virtual ReturnStatus setGPU(uint8_t gpuNum) = 0; 	
7.	 static std::shared_ptr<VerifInterface> getImplementation(); Factory	method	to	return	a	managed	pointer	

to	the	VerifInterface	object.		This	
function	is	implemented	by	the	submitted	
library	and	must	return	a	managed	pointer	to	
the	VerifInterface	object.	

8. }; 	
	336	
There	is	one	class	(static)	method	declared	in	VerifInterface.	getImplementation()	which	must	also	be	337	
implemented	by	the	implementation.	This	method	returns	a	shared	pointer	to	the	object	of	the	interface	type,	an	338	
instantiation	of	the	implementation	class.	A	typical	implementation	of	this	method	is	also	shown	below	as	an	example.	339	
	340	
	 C++	code	fragment		 Remarks	
 #include “frpc.h”

using namespace FRPC;

NullImpl:: NullImpl () { }

NullImpl::~ NullImpl () { }

std::shared_ptr<VerifInterface>
VerifInterface::getImplementation()
{
 return std::make_shared<NullImpl>();
}

// Other implemented functions

	

3.3.2.2. Initialization	341	
The	NIST	test	harness	will	call	the	initialization	function	in	Table	20	before	calling	template	generation	or	matching.	342	

Table	20	–	Initialization		343	

Prototype	 ReturnStatus	initialize(
const	std::string	&configDir);	 Input	

Description	 This	function	initializes	the	implementation	under	test.		It	will	be	called	by	the	NIST	application	before	any	call	to	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	17	of	18	
	

	 createTemplate()	or	matchTemplates().		The	implementation	under	test	should	set	all	parameters.		This	
function	will	be	called	N=1	times	by	the	NIST	application,	prior	to	parallelizing	M	>=	1	calls	to	createTemplate()	
via	fork().	

Input	Parameters	 configDir	 A	read-only	directory	containing	any	developer-supplied	configuration	parameters	or	run-
time	data	files.		The	name	of	this	directory	is	assigned	by	NIST,	not	hardwired	by	the	
provider.		The	names	of	the	files	in	this	directory	are	hardwired	in	the	implementation	and	
are	unrestricted.	

Output	
Parameters	

none	 	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	

3.3.2.3. GPU	Index	Specification	344	
For	implementations	using	GPUs,	the	function	of	Table	21	specifies	a	sequential	index	for	which	GPU	device	to	execute	345	
on.		This	enables	the	test	software	to	orchestrate	load	balancing	across	multiple	GPUs.	346	

Table	21	–	GPU	index	specification	347	

Prototypes	 ReturnStatus	setGPU	(
uint8_t	gpuNum);	 Input	

Description	 This	function	sets	the	GPU	device	number	to	be	used	by	all	subsequent	implementation	function	calls.		gpuNum	is	
a	zero-based	sequence	value	of	which	GPU	device	to	use.		0	would	mean	the	first	detected	GPU,	1	would	be	the	
second	GPU,	etc.		If	the	implementation	does	not	use	GPUs,	then	this	function	call	should	simply	do	nothing.	

Input	
Parameters	

gpuNum	 Index	number	representing	which	GPU	to	use.	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	

3.3.2.4. Template	generation	348	
The	function	of	Table	22	supports	role-specific	generation	of	a	template	data.		Template	format	is	entirely	proprietary.	349	

Table	22	–	Template	generation	350	

Prototypes	 ReturnStatus	createTemplate(
const	Image	&face,	 Input	
TemplateRole	role,	 Input	
std::vector<uint8_t>	&templ,	
EyePair	&eyeCoordinates);	

Output	
Output	

Description	 Takes	an	Image	and	outputs	a	proprietary	template	and	optionally,	associated	eye	coordinates.		The	vector	to	store	the	
template	will	be	initially	empty,	and	it	is	up	to	the	implementation	to	populate	it	with	the	appropriate	data.		In	all	
cases,	even	when	unable	to	extract	features,	the	output	shall	be	a	template	that	may	be	passed	to	the	
matchTemplates()	function	without	error.		That	is,	this	routine	must	internally	encode	"template	creation	failed"	and	
the	matcher	must	transparently	handle	this.	

Input	
Parameters	

face	 Input	face	image	
role	 Label	describing	the	type/role	of	the	template	to	be	generated.		In	this	case,	it	will	either	be	

Enrollment_11	or	Verification_11.	
Output	
Parameters	

templ	 The	output	template.		The	format	is	entirely	unregulated.		This	will	be	an	empty	vector	when	
passed	into	the	function,	and	the	implementation	can	resize	and	populate	it	with	the	
appropriate	data.	

eyeCoordinates	 (Optional)	The	function	may	choose	to	return	the	estimated	eye	centers	for	the	input	face	
image.	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	

3.3.2.5. Matching	351	
Matching	of	one	enrollment	against	one	verification	template	shall	be	implemented	by	the	function	of	Table	23.	352	

Table	23	–	Template	matching	353	

Face	Recognition	Prize	Challenge	

	 	
NIST	 Concept,	Evaluation	Plan	and	API		 Page	18	of	18	
	

Prototype	 ReturnStatus	matchTemplates(
const	std::vector<uint8_t>	&verifTemplate,	 Input	
const	std::vector<uint8_t>	&enrollTemplate,	 Input	
double	&similarity);	 Output	

Description	
	

Compare	two	proprietary	templates	and	output	a	similarity	score,	which	need	not	satisfy	the	metric	properties.	
When	either	or	both	of	the	input	templates	are	the	result	of	a	failed	template	generation	(see	Table	22),	the	
similarity	score	shall	be	-1	and	the	function	return	value	shall	be	VerifTemplateError.	

Input	Parameters	 verifTemplate	 A	verification	template	from	createTemplate(role=Verification_11).		The	underlying	
data	can	be	accessed	via	verifTemplate.data().		The	size,	in	bytes,	of	the	template	
could	be	retrieved	as	verifTemplate.size().	

enrollTemplate	 An	enrollment	template	from	createTemplate(role=Enrollment_11).		The	
underlying	data	can	be	accessed	via	enrollTemplate.data().		The	size,	in	bytes,	of	
the	template	could	be	retrieved	as	enrollTemplate.size().	

Output	
Parameters	

similarity	 A	similarity	score	resulting	from	comparison	of	the	templates,	on	the	range	
[0,DBL_MAX].		See	section	2.2.4.	

Return	Value	 See	Table	9	for	all	valid	return	code	values.	

 354	

